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Metallic glasses are characterized by a rather complex viscoelastic response and the occurrence of the glass
transition, while the atomistic origins are still poorly understood. Using a realistic CuTi model glass we employ
global and local elasticity tensors for a thorough analysis of relaxation kinetics and mechanical stability. We
obtain strong indication that �i� � relaxation is governed by an underlying process �identified as slow �
relaxation� which resembles diffusion in its temperature dependence, �ii� glasses reveal intrinsic mechanical
instabilities, which are closely linked to collective shear events within shear transformation zones, and �iii�
glass transition can be understood as a percolation transition of mechanically unstable regions.
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As already pointed out by Born1 almost 70 years ago, the
elasticity tensor is a key quantity to characterize the stability
of condensed matter with respect to strain, e.g., to discrimi-
nate solids from liquids by the failure of liquids to sustain
shear strain. Clearly this concept is also suitable for the
liquid-glass transition, which is characterized by the onset of
viscous flow.

When dealing with glasses, care, however, has to be taken
due to �i� viscoelastic properties2 and �ii� dynamical hetero-
geneities �see, e.g., Ref. 3 for a review�. Basically, �i� con-
stitutes an observation time dependence of the response to an
applied disturbance and manifests itself, e.g., in strain-rate-
dependent mechanical properties4 or in the heating rate de-
pendence of the glass transition itself.5 The latter can be
unveiled by observations on multiple times scales, which
poses the main challenge—both experimentally and from a
simulation point of view. Indications for �ii�—although ini-
tially not identified as such—date back to the first observa-
tions of a stretched exponential �Kohlrausch6� decay of the
relaxation functions in amorphous systems.3 Strong corrobo-
ration for spatial mechanical heterogeneities �so-called
“shear transformation zones” �STZs�� originates from ana-
lytical and computational model systems7–11 as well as com-
pilations of experimental data.12 Given that elastic constants
are directly linked to system structure and dynamics,13 STZs
are certain to leave their fingerprints directly on elastic prop-
erties. Vice versa, this suggests local elastic properties as
ideal probe to track down STZs—in experiments and atom-
istic computer simulation.

In our present study we employ massively parallel classi-
cal molecular dynamics �MD� simulations on a Cu50Ti50
model glass with the aim of clarifying the spatiotemporal
hierarchy of processes, which govern the mechanical re-
sponse of glasses and the glass transition. Employing a real-
istic embedded atom method �EAM� potential14 for CuTi
�Ref. 15� in a self-written massively parallelized MD code,
highly relaxed amorphous a–Cu50Ti50 cells with �3.5
�104 particles each were prepared by quenching from melt
�6000 K� with rates of 0.1 K/ps, subsequent annealing
around the glass transition temperature ��0.2 �s at 600 K�
and final approach of the desired temperature, all under iso-
baric ��ii=0; i=1,2 ,3� conditions in a rectangular simula-
tion box. Temperatures and pressures were controlled with
Nose-Hoover16,17 thermostats and Berendsen barostats,18 re-

spectively. Amorphicity was verified by calculating the
radial/angular distribution functions, by monitoring the onset
of viscous flow under applied shear stress at TG, as well as
by calorimetry. The global elasticity tensor, Cijkl, of the total
cell is calculated in an �T ,h ,N� ensemble, following the
original fluctuation formalism of Ray et al.,13 as adapted for
EAM potentials.19,20 To address local properties, the simula-
tion box is subdivided into a cubic raster; Cijkl

ℷ within each
subcell, ℷ, is computed by following a formalism proposed
by Lutsko21,22 which had been generalized for binary EAM
potentials in the present work. Based on the original EAM
formalism,14 we assume, that 	�, 	�

T, 
�, and ��� denote the
atomic electron density of �, the total electron density in the
location of �, embedding energy and pair interaction, respec-
tively. The elasticity tensor, Cijkl

ℷ , is then calculated as sum of
so-called Born terms �Bijkl

ℷ � as well as fluctuation �Fijkl
ℷ � and

kinetic �Kijkl
ℷ � contributions

Bijkl
ℷ
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Here �·� denotes an average over observation time for an
ensemble of systems initially residing in different metastable
states �excluding transient states�. Defining ���

ℷ as that frac-
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while Fijkl
ℷ and Kijkl

ℷ are given in Ref. 21. It is interesting to
note within this context that Bijkl

ℷ describes the isoconfigura-
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tional shear modulus and is found to be the largest positive
contribution in Eq. �1� for the system investigated. Fijkl

ℷ de-
scribes softening due to reconfigurations and is found to be
particularly important in the liquid state, while Kijkl

ℷ is two
orders of magnitudes smaller than the other terms within the
present studies. Figure 1 shows three major components of
the elasticity tensor, Cij for an observation time of 1.0 ns, as
well as the corresponding Born terms, Bij, using Voigt nota-
tion. The pronounced drops of C11 toward C12 and of C44
toward zero in the range of 600–700 K indicate vanishing
shear moduli for T�TG�687.5 K. It is also intriguing to
point out that the Born terms do not reveal any significant
anomalies when increasing the temperature beyond TG. Not-
ing that Bij is only �but strongly� dependent on the structure,
this clearly indicates that no significant structural changes
occur at TG, thus corroborating its kinetic nature.

The latter aspect is investigated in detail in Fig. 2, which
shows a dramatic decrease in the shear modulus, C44, with
increasing time around TG. Detailed inspection of the exact
shape of C44�t� unveils a stretched exponential, Kohlrausch
type of decay with �=0.5 for all temperatures investigated.23

In the following we aim to address the stretched exponen-
tial � relaxation in more detail. Figure 3 shows an Arrhenius
plot of the corresponding relaxation times �—together with

diffusion constants D; the latter had been determined by
monitoring mean-square displacements in simulation cells of
3.5�104 atoms for �0.2 �s each. Both quantities clearly
show a comparable behavior, which is characterized by an
Arrhenius curve for temperatures lower than a critical tem-
perature, TC, while deviations are evident at higher tempera-
tures. We note that for diffusivities this is well documented
in experimental and simulational studies,24 while TC is gen-
erally regarded as the critical temperature of the mode-
coupling theory25 at which the amorphous matrix starts to
appear as liquid on the time scale of individual atomic pro-
cesses.

To proceed further, we employ a simple potential-energy
landscape26 picture for individual STZs �Fig. 4�a�� in which
� relaxation proceeds by transitions between numerous sub-
structured basins �reflecting the very high fragility of our
model glass�, while the system basically performs a random
walk on the substructure.27,28 Following Stillinger29 we iden-
tify the latter with slow � relaxations.30

To rationalize our stretched exponential decay of C44 �Fig.
2� �Ref. 31� we first note that � events are accompanied by
excessive stress fluctuations, which reduce C44 via Fijkl

ℷ in
Eq. �1� down to zero in the liquid state. While this is based
on sufficient sampling of phase space, the latter is prevented
in the glassy state. We cast this problem into the definition of
a reaction coordinate � �for convenience assumed to be iden-
tical for all STZs in the following �Fig. 4�a���, which needs
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FIG. 1. Temperature dependence of global elastic properties of a
fully relaxed amorphous CuTi simulation cell �observation time:
1.0 ns�.
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FIG. 2. Observation time dependence of the apparent shear
modulus, C44, obtained from an ensemble average over �20 inde-
pendent simulation runs per temperature. The solid lines indicate
fits to C44=C44,0 · exp�−�t /��; the bottom two curves correspond to
800 and 850 K.
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FIG. 4. �Color online� �a� Schematic model potential-energy
landscape �Refs. 27 and 28� �see text�. �b� Nonaffine displacement
field due to uniaxial strain ��22=0.52% at 10 K� in comparison with
a rastered map of smallest eigenstiffnesses of the local elasticity
tensors �ranging from −1831 to 21 GPa�, indicating most unstable
regions as shaded.
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to be fully sampled to obtain liquid behavior, while only
partial sampling �a fraction of �t /�� occurs within time t in
the glass. Assuming a uniform initial distribution in the ba-
sins along �, and averaging over all STZs, the portion of �,
which is not included in the time averages, goes like 1
−exp�−��t /�� �with a constant ��. This leads to a stretched
exponential convergence of fluctuations and thus C44.

Global viscoelastic response is clearly a consequence of
processes on smaller scales; for a detailed understanding it is
therefore very instructive to consider Cij

ℷ on rasters of spac-
ing, �, down to atomic level. For an investigation of shear
stability we address the positive definiteness of Cij

ℷ �viz., the
positiveness of the “eigenstiffnesses” �m

ℷ ; m=1. . .5� by solv-
ing the eigenvalue problems in Kelvin notation32 �̃i

ℷ ·�m
ℷ

= Pij · C̃jk
ℷ /2· Pkl · �̃l

ℷ while employing a projector, Pij, to elimi-
nate volume changes.33 Most strikingly, at temperatures as
low as 10 K more and more ℷ reveal mechanical instabilities
with decreasing � �for ��13 Å� until �99% of the cells
are unstable at �=2.6 Å. Regions that aggregate mechanical
instabilities are prone to yield during mechanical load, viz.,
to establish strain localization within STZs �Fig. 4�b��. In
fact, observations of shear localization in glassy systems date
back to computer simulations by Srolovitz et al.34 and have
been promoted much in elaborate computational-analytical
studies by Falk and Langer.9 From a systematic analysis of
the largest raster with at least one negative eigenstiffness �not
shown here�, the average STZ size at 10 K is readily esti-
mated as �163�10 atoms, in agreement with previous
results.10,27

For a more thorough statistical analysis of stability we
sort in the following the individual eigenstiffnesses, �i

ℷ, in
ascending order �i=1. . .5� and characterize the total system
with the corresponding average values, �i= ��i

ℷ�ℷ—as a func-
tion of raster size � and temperature. While the three largest
averaged eigenstiffnesses, �3 ,�4 ,�5, remain positive for all
temperatures investigated, it is particularly instructive to
consider �1 and �2 as shown in Fig. 5; for all temperatures
�even as low as 10 K� we first find that the average glass is
always mechanically unstable on length scales smaller than
�6.9 Å �i.e., the typical size of the short range order, as

evident from �1�, while stabilization occurs on larger scales.
That is, glasses can only exist in samples exceeding a critical
size which is capable of blocking all instabilities or they will
spontaneously transfer into a different structure. Thus our
finding therefore naturally incorporates the old notion that
frustration �see, e.g., Ref. 2� is a key ingredient of glassy
stability, which can only prevail in the presence of a suffi-
ciently large surrounding matrix.

While for temperatures up to 500 K our model glass does
not reveal any major changes in �i—in agreement with the
overall mechanical response �Fig. 1�—exceeding �600 K
results in a dramatic increase of mechanical instability in two
�out of five� eigenstrain directions �Fig. 5�, which is clearly
to be attributed to the onset of thermally activated processes.
Presumably starting from the frustration-related mechanical
instabilities, the onset of thermal activations most strongly
destabilizes atomic-scale configurations, affecting from there
larger and larger scales, until the full cell is reached in the
liquid state �Fig. 5�.

Defining an overall direction of applied shear strain in an
external coordinate system �e.g., �44�, the geometry of un-
stable regions are readily visualized in cross-sectional plots.
As evident from Fig. 6, unstable regions form a network
within the cell, which appears to percolate once TG is
exceeded. In fact, as evident from the percolation correlation
functions35 calculated for the three-dimensional simulation
cells �Fig. 7�, the glass transition quantitatively appears to be
a percolation transition of shear unstable region. It is inter-
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esting to point out that—prior to percolation—the correlation
length of the percolation correlation function, again, reflects
the STZ size.

To conclude, we have identified mechanical instabilities
as key ingredients to relate structure and mechanics in
glasses and supercooled liquids. Now identified, it will be

very exciting to include these concepts in analytical struc-
tural models for disordered matter in the future.
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